-.𝑀𝑖𝑑𝑟𝑒𝑎𝑚.- Posted September 23, 2023 Posted September 23, 2023 Bonjour, je suis totalement perdu avec ce QCM ! Si quelqu'un veut bien m'aider, ça me serait très utile ! Merci beaucoup ! Dr_Zaius 1 Quote
Reumi Posted September 23, 2023 Posted September 23, 2023 il y a 5 minutes, -.𝑀𝑖𝑑𝑟𝑒𝑎𝑚.- a dit : Bonjour, je suis totalement perdu avec ce QCM ! Si quelqu'un veut bien m'aider, ça me serait très utile ! Merci beaucoup ! Salut ! ce QCM de biostats porte sur le graphique des lois normales que l'on a encore vu en cours (on a pas vu grand chose en cours). Si tu le regardes je pense que tu comprendras mieux la majorité des questions : Ici la loi est dite centrée sur u donc le centre du graphique 0 est u. quand on te dit u + σ on décale de un écart type par rapport au centre du graphique et il ne te reste plus qu'a regarder les probabilités de chaque segment ! j'espère que ma réponse te sera utile et bon courage Flèche and Dr_Zaius 1 1 Quote
Ancien du Bureau Dr_Zaius Posted September 23, 2023 Ancien du Bureau Posted September 23, 2023 (edited) Coucou @-.𝑀𝑖𝑑𝑟𝑒𝑎𝑚.- ! Merci @Reumi (je fais quand même la correction au cas où quelqu'un passe par là) Pour ce QCM il faut avoir ce schéma en tête représentant la loi normale centrée sur μ et d'écart-type σ : ici on admet l'approximation 2 ≈ 1,96 A. En t'aidant du schéma tu vois qu'entre μ - 2σ et μ + 2σ la probabilité correspondant aussi à l'air sous la courbe est de 95%. Ici on te demande la probabilité inférieure à μ + 2σ donc il faut rajouter la petite zone grise toute à gauche qui fait 2.1% comme tu le vois sur le schéma de @Reumi. Cela ferait donc 0,95.4 + 0,021 = 0,975 et non pas 0,95, l'item est donc faux. B. Ici on s'intéresse à toutes les valeurs supérieures à μ. Donc toute la partie droite de la courbe. La courbe est symétrique par rapport à μ comme tu le vois, et puisque la probabilité correspond à l'aire sous la courbe alors on voit qu'elle est de 0,5 à droite et 0,5 à gauche. Item vrai. C. Ici on voit qu'entre μ - σ et μ + σ on a une probabilité de 0,68, l'item est donc faux. D. Ici il faut faire un petit calcul, on sait qu'entre μ - σ et μ + σ on a une probabilité de 0,68. donc entre μ + σ on a une probabilité de 0,68 / 2 = 0,34. Or à gauche de μ on a une probabilité de 0,5. Si on cherche la probabilité après μ + σ, sachant que la probabilité totale vaut 1, on aura : 1 - (0,5 + 0,34) = 1 - 0,84 = 0,16. L'item est donc vrai. E. Ici il faut connaître la définition de la fonction de répartition d'une variable aléatoire X. Ici c'est exactement la définition qui est donnée, l'item est donc vrai. En espérant que ça aidera certains ! Bon courage ! Edited September 23, 2023 by Dr_Zaius Movgde and Flèche 1 1 Quote
-.𝑀𝑖𝑑𝑟𝑒𝑎𝑚.- Posted September 23, 2023 Author Posted September 23, 2023 @Reumi @Dr_Zaius Merci beaucoup pour les explications !!! Bonne journée ! Dr_Zaius 1 Quote
Ancien Responsable Matière Solution Flèche Posted September 23, 2023 Ancien Responsable Matière Solution Posted September 23, 2023 Coucou @-.𝑀𝑖𝑑𝑟𝑒𝑎𝑚.- ! Je viens juste compléter qq réponses de @Dr_Zaius qui a très bien expliqué comme raisonner dans ce QCM (merci au passage !). il y a 9 minutes, Dr_Zaius a dit : A. En t'aidant du schéma tu vois qu'entre μ - 2σ et μ + 2σ la probabilité correspondant aussi à l'air sous la courbe est de 95%. Ici on te demande la probabilité inférieure à μ + 2σ donc il faut rajouter la petite zone grise toute à gauche qui fait 2.1% comme tu le vois sur le schéma de @Reumi. Cela ferait donc 0,97 et on peut considérer l'item vrai. Y'a juste pour l'item A, je suis pas totalement d'accord (à voir avec la correction du QCM, tu l'as trouvé où ce QCM @-.𝑀𝑖𝑑𝑟𝑒𝑎𝑚.- ?). Pour moi l'item est faux car comme l'a dit @Dr_Zaius la probabilité d'avoir une valeur comprise entre µ - 2 sigma et µ + 2 sigma est d'environ 95%, or nous on cherche la probabilité que la valeur soit inférieure à µ + 2 sigma donc il faut rajouter 2,5% (car c'est la partie grisée de gauche : (1 - 0,95) / 2 = 0,5/2 = 0,25). Donc en tout la probabilité est environ égale à 97,5% et pas 95% comme proposé dans l'item -> item FAUX. @-.𝑀𝑖𝑑𝑟𝑒𝑎𝑚.- je te laisse vérifier avec la correction que tu avais de ce QCM. N'hésite pas si tu as des questions ! Dr_Zaius and Movgde 1 1 Quote
Ancien du Bureau Dr_Zaius Posted September 23, 2023 Ancien du Bureau Posted September 23, 2023 (edited) Coucou @Flèche ! J'ai le "environ" facile Le bras de fer est engagé, en attente de confirmation (tu m'as ref donc si jamais j'éditerai) Edited September 23, 2023 by Dr_Zaius Flèche 1 Quote
-.𝑀𝑖𝑑𝑟𝑒𝑎𝑚.- Posted September 23, 2023 Author Posted September 23, 2023 @Flèche @Dr_Zaius l'item A est bien marqué faux sur la correction Mais merci beaucoup à tous les deux, j'ai tout compris ! Flèche 1 Quote
Ancien du Bureau Dr_Zaius Posted September 23, 2023 Ancien du Bureau Posted September 23, 2023 il y a 1 minute, -.𝑀𝑖𝑑𝑟𝑒𝑎𝑚.- a dit : @Flèche @Dr_Zaius l'item A est bien marqué faux sur la correction Mais merci beaucoup à tous les deux, j'ai tout compris ! "J'en ai un peu plus je vous le met" n'est un raisonnement valable qu'en boucherie-charcuterie Merci pour ta réponse @-.𝑀𝑖𝑑𝑟𝑒𝑎𝑚.- Flèche and péri-an-toine 2 Quote
Ancien Responsable Matière Flèche Posted September 23, 2023 Ancien Responsable Matière Posted September 23, 2023 Révélation il y a 1 minute, -.𝑀𝑖𝑑𝑟𝑒𝑎𝑚.- a dit : l'item A est bien marqué faux sur la correction Ouf ça va psk j'avais mis ma réputation de RM biostats en jeux face au super @Dr_Zaius, ça me rassure je suis pas encore si vieille que ça finalement il y a 3 minutes, -.𝑀𝑖𝑑𝑟𝑒𝑎𝑚.- a dit : j'ai tout compris ! En tout cas plus sérieusement, je suis contente que t'aies réussi à comprendre le principe, c'est l'essentiel. N'hésite pas si tu as des questions ! Dr_Zaius 1 Quote
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.