Ancien Responsable Matière Soleneuh Posted October 19, 2018 Ancien Responsable Matière Posted October 19, 2018 Bonsoir ! J'aurais quelques petites questions concernant le CCB de maths de 2015 (trouvé dans la librairie de Maraichers), si quelqu'un voulait bien m'aider s'il vous plait : -QCM 3 : je ne comprends pas pourquoi la E est fausse : --> on doit faire la dérivée de g(x) = sin [cos(x)] --> je trouve g'(x)= -sin.cos2(x) --> comme l'item qui pourtant est compté faux... -QCM 11 : item A, l'item qui est compté faux dit "une population est constituée d'unités statistiques en nombre fini" --> je ne comprends pas comment on pourrait avoir une population en nombre infini ? c'est possible ? Voilà merci beaucoup pour vos réponses Quote
Solution Chat_du_Cheshire Posted October 19, 2018 Solution Posted October 19, 2018 Cc! 1) sin(z)' = z'cos(z). Ici z = cos donc z' = -sin, donc finalement on trouve -sin*cos(cos) = -sin*cos², je te confirme l'erratum il y en avait dans ce CCB 2) Oui une population peut être tellement grande qu'on peut parfois la supposer infinie (c'est bien écrit dans le cours en tout petit) dac ? Quote
Ancien Responsable Matière Soleneuh Posted October 19, 2018 Author Ancien Responsable Matière Posted October 19, 2018 (edited) @Chat_du_Cheshire c'est super clair merci beaucoup !! PS: en notant toutes mes questions pour les mettre dans un seul post j'ai oublié celle-ci : (qui provient d'un qcm de td sur moodle) : Je ne comprends pas du tout cette phrase (correction d'un item) --> 2,5% des valeurs d'une distribution normale sont inférieures à la valeur de la moyenne moins deux écart-types. Désolée pour le dérangement En tout cas merci beaucoup pour ta réponse rapide c'est super cool Edited October 19, 2018 by solenefdo Quote
Chat_du_Cheshire Posted October 19, 2018 Posted October 19, 2018 il y a 9 minutes, solenefdo a dit : @Chat_du_Cheshire c'est super clair merci beaucoup !! PS: en notant toutes mes questions pour les mettre dans un seul post j'ai oublié celle-ci : (qui provient d'un qcm de td sur moodle) : Je ne comprends pas du tout cette phrase (correction d'un item) --> 2,5% des valeurs d'une distribution normale sont inférieures à la valeur de la moyenne moins deux écart-types. Désolée pour le dérangement En tout cas merci beaucoup pour ta réponse rapide c'est super cool Pour '' moyenne +/- 2écart-type '', cela correspond à 95% au centre donc 2,5% à chaque extrémité, tu visualises mieux ? Donc 2,5% sont < à '' moyenne - 2écart-type '' et 2,5% sont > à '' moyenne + 2écart-type '' ! Quote
Ancien Responsable Matière Soleneuh Posted October 19, 2018 Author Ancien Responsable Matière Posted October 19, 2018 @Chat_du_Cheshire oui d'accord je vois mieux maintenant merci beaucoup !! Quote
Ancien du Bureau sebban Posted October 20, 2018 Ancien du Bureau Posted October 20, 2018 (edited) Il y a 16 heures, Chat_du_Cheshire a dit : 1) sin(z)' = z'cos(z). Ici z = cos donc z' = -sin, donc finalement on trouve -sin*cos(cos) = -sin*cos², je te confirme l'erratum il y en avait dans ce CCB Est-ce bien vrai ? Je trouve que cos(cos(x)) et cos²(x) ont deux courbes bien différentes. De plus si on essaie en 0, cos²(0) = cos(0)*cos(0) = 1*1 = 1 ; tandis que cos(cos(0)) = cos(1) = 0.54 Selon moi l'item est bien faux car on trouve -sin(x)*cos(cos(x)), qui est sensiblement différent de -sin(x)*cos²(x) Edited October 20, 2018 by sebban Quote
Ancien Responsable Matière Soleneuh Posted October 20, 2018 Author Ancien Responsable Matière Posted October 20, 2018 il y a 54 minutes, sebban a dit : Selon moi l'item est bien faux car on trouve -sin(x)*cos(cos(x)), qui est sensiblement différent de -sin(x)*cos²(x) Ah ouais vu comme ça enf ait cos(cos(x)) ça serait de la forme fog avec f = cos (x) et g = cos (x) alors que cos2(x) c'est de la forme u.v avec u=cos(x) et v = cos(x), c'est ça que tu veux dire ? Quote
Chat_du_Cheshire Posted October 20, 2018 Posted October 20, 2018 Je comprends pas trop car d'après @solenefdo il est faux mais d'après : http://www.noelshack.com/2018-41-6-1539425544-img-1850.jpg c'était bien compté vrai :s Mais sinon effectivement tu as raison @sebban ! Quote
Ancien Responsable Matière Soleneuh Posted October 20, 2018 Author Ancien Responsable Matière Posted October 20, 2018 @Chat_du_Cheshire ah bah j'avais vu une correction ou c'était compté faux pardon :[ Quote
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.