Jump to content

QCM 1 cc rangueil


Go to solution Solved by Oga,

Recommended Posts

Posted

Bonjour!

 

Je ne comprend pas très bien comment répondre aux items B, C ( même avec les -f(x)=f(-x) etc ) et D, et je comprends pas non plus la correction du TAT :(

 

Merci pour l'aide que vous pourrez m'apporter

 

QCM:

https://image.noelshack.com/fichiers/2017/48/4/1512059416-capture-d-ecran-2017-11-30-a-17-25-38.png

 

 

Correction tat :

https://image.noelshack.com/fichiers/2017/48/4/1512059424-capture-d-ecran-2017-11-30-a-17-25-30.png

  • Solution
Posted

Bonjouuur à toi,

 

Comment ça tu ne comprends pas ma correction :rolleyes:

 

Je suis fort désolée si c'est pas clair, alors je vais essayer de ré-expliquer.

 

Pour résoudre ce QCM, il faut que tu trouves à l'aide du cercle que: [latex]\cos(x-\frac{\Pi}{2}) = \sin(x) [/latex] et  [latex]\sin(x-\frac{\Pi }{2})=-\cos(x)[/latex].

Je suis désolée de répéter ce que j'ai dit mais ça tu dois savoir le trouver avec un cercle, ça fait parti des notions que la prof veut que vous sachiez faire. Ou alors tu l'apprends par coeur mais à ce moment là faut aussi l'apprendre pour [latex]x+\frac{\Pi}{2}[/latex] etc...

 

Pour mieux comprendre:

255554Cercletrigonometriquegradue.jpg

 

 

La fonction revient donc à [latex]f(x)=\frac{\sin(x)}{-\cos(x)}=-\tan(x)[/latex] pour aller au bout du raisonnement.

 

Maintenant pour tester si la fonction est paire ou impaire: [latex]f(-x)=-\tan(-x)=\tan(x)=-(-\tan(x))=-f(x)[/latex]. Elle est donc IMPAIRE

 

Pour [latex]2\Pi -[/latex] périodique: [latex]-\tan(x-2\Pi )=-\tan(x)=f(x)[/latex] 

 

Dis moi si ça reste confus

Posted

Bonsoir,

 

merci d'avoir répondu, la correction me semble déjà plus clair, ( et tu repetes bien sur le plus gros mais j'avais pas compris, pas vu jsp l'étape "  fa87f3437170c164e80748c2d9a16268.png et  60bc04161daabed8573dca00a78a9585.png." avec l'illustration par le cercle, donc ça m'avait simplement bloqué dans la compréhension de la correction :) )

 

du coup pour la periode il faudrait simplement utiliser les equations suivantes ? par exemple ici avec tan comme tu l'as mis tan (x + n*PI) = tan(x) ? 

 

 

 

merci beaucoup!

post-10328-0-87612500-1512073057_thumb.png

Posted

Bonjouuur à toi,

 

Comment ça tu ne comprends pas ma correction :rolleyes:

 

Je suis fort désolée si c'est pas clair, alors je vais essayer de ré-expliquer.

 

Pour résoudre ce QCM, il faut que tu trouves à l'aide du cercle que: [latex]\cos(x-\frac{\Pi}{2}) = \sin(x) [/latex] et [/size][latex]\sin(x-\frac{\Pi }{2})=-\cos(x)[/latex].

Je suis désolée de répéter ce que j'ai dit mais ça tu dois savoir le trouver avec un cercle, ça fait parti des notions que la prof veut que vous sachiez faire. Ou alors tu l'apprends par coeur mais à ce moment là faut aussi l'apprendre pour [latex]x+\frac{\Pi}{2}[/latex] etc...

 

Pour mieux comprendre:

255554Cercletrigonometriquegradue.jpg

 

 

La fonction revient donc à [latex]f(x)=\frac{\sin(x)}{-\cos(x)}=-\tan(x)[/latex] pour aller au bout du raisonnement.

 

Maintenant pour tester si la fonction est paire ou impaire: [latex]f(-x)=-\tan(-x)=\tan(x)=-(-\tan(x))=-f(x)[/latex]. Elle est donc IMPAIRE

 

Pour [latex]2\Pi -[/latex] périodique: [latex]-\tan(x-2\Pi )=-\tan(x)=f(x)[/latex]

 

Dis moi si ça reste confus

Bonsoir,

 

Merci pour tes explications. Cependant, même avec le cercle (et les annotations que tu as rajouté dessus), je n'arrive pas montrer l'égalité... Y'a t il des valeurs à calculer ?

Posted

J'ai du mal à comprendre qu'elles sont les égalités et comment les mettre en évidence sur le cercle aussi... Si tu pouvais préciser stp 0:) ?

Bonne soirée

Posted

Bonjour,

 

Quelque petites explications supplémentaires par rapport au graphique :   fa87f3437170c164e80748c2d9a16268.png 

Cela revient à dire que l'abscisse de ton point ( x - π/2 ) est égale à l'ordonné de ton point x. 

Ainsi en choisissant arbitrairement un point x tu trouves un point ( x - π/2 ) il ne te reste plus qu'à comparé leur abscisse ( valeur du cosinus ) et ordonné ( valeur du sinus )

 

Pour : 60bc04161daabed8573dca00a78a9585.png.  Le principe est le même mais il faut faire attention aux signes de tes valeurs d'abscisse et d'ordonnée.

 

Voilà j'espère que cela t'a aidé sinon essaie de passer nous voir lors d'une perm. 

Posted

Oui il faut raisonner comme l'a dit Paul Gambini... Après ce n'est pas une réelle démonstration, mais c'est une manière de les retrouver via le cercle pour ne pas avoir à apprendre ces relations par coeur... Il faut essayer de voir les valeurs qui ont l'air à peu près égales et de respecter les signes!

Et c'est important de ne pas prendre des valeurs particulières comme [latex]\frac{\Pi}{2}[/latex] ou [latex]0[/latex] car on peut s'embrouiller au niveau des signes etc!

 

Si vous n'arrivez pas à le voir n'hésitez pas à venir à la perm en effet!

Posted

Bonjour,

 

Quelque petites explications supplémentaires par rapport au graphique :   fa87f3437170c164e80748c2d9a16268.png 

Cela revient à dire que l'abscisse de ton point ( x - π/2 ) est égale à l'ordonné de ton point x. 

Ainsi en choisissant arbitrairement un point x tu trouves un point ( x - π/2 ) il ne te reste plus qu'à comparé leur abscisse ( valeur du cosinus ) et ordonné ( valeur du sinus )

 

Pour : 60bc04161daabed8573dca00a78a9585.png.  Le principe est le même mais il faut faire attention aux signes de tes valeurs d'abscisse et d'ordonnée.

 

Voilà j'espère que cela t'a aidé sinon essaie de passer nous voir lors d'une perm.

 

Oui il faut raisonner comme l'a dit Paul Gambini... Après ce n'est pas une réelle démonstration, mais c'est une manière de les retrouver via le cercle pour ne pas avoir à apprendre ces relations par coeur... Il faut essayer de voir les valeurs qui ont l'air à peu près égales et de respecter les signes!

Et c'est important de ne pas prendre des valeurs particulières comme [latex]\frac{\Pi}{2}[/latex] ou [latex]0[/latex] car on peut s'embrouiller au niveau des signes etc!

 

Si vous n'arrivez pas à le voir n'hésitez pas à venir à la perm en effet!

Rebonjour,

 

Je viens de me rendre compte que l'item D est vrai et à chaque fois je tombe dans le piège...

Est-ce que c'est parce que tan est périodique Pi et du coup il est périodique 2pi, 3pi etc etc ?

Alors que si l'on écrit que sin et cos sont périodiques Pi c'est faux n'est ce pas ?

 

Merci ! Passez une bonne journée.

Posted

Oui tan est périodique Pi donc 2Pi ou 3Pi plus tard ce sera la même chose.. donc tan périodique kpi avec k entier relatif. Même si tan est le quotient de sin sur cos c'est un cas particulier ou c'est quand même Pi périodique car cos(x+pi)=-cos(x) et sin(x+pi)=-sin(x) donc les signes moins s'annulent dans le quotient et on retombe bien sûr la même fonction

Si tu regardes sur un cercle ou avec les courbes de sinus et cosinus elles ne sont pas périodiques sur pi ça change de signe! Elles sont donc périodiques 2pi, 4pi... soir k2pi avec k entier relatif.

Posted

Oui tan est périodique Pi donc 2Pi ou 3Pi pmus tard ce sera la même chose.. donc tan périodique loi avec k entier relatif. Même si tan est le quotient de sin sur cos c'est un cas particulier ou c'est quand même Pi périodique car cos(x+pi)=-cos(x) et sin(x+pi)=-sin(x) donc les signes moins s'annulent dans le quotient et on retombe bien sûr la même fonction

Si tu regardes sur un cercle ou avec les courbes de sinus et cosinus elles ne sont pas périodique sur pi ça change de signe! Elles sont donc périodiques 2pi, 4pi... soir k2pi avec k entier relatif.

Merci pour ta réponse !

Passe une bonne journée.

Guest
This topic is now closed to further replies.
  • Recently Browsing   0 members

    • No registered users viewing this page.
×
×
  • Create New...